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Abstract. In the first in a series of three papers on wall relaxation of spin polarized 3He we have reported on
a breakdown of relaxation times which is observed after exposing the 3He containing glass cells to a strong
magnetizing field. In this third paper we give a quantitative analysis of this phenomenon, based on magnetic
signal detection by means of SQUIDs, on the pressure dependence of relaxation times in magnetized cells,
as well as on Monte Carlo simulations of 3He-relaxation in a macroscopic dipole field. Our analysis allows
to identify the contaminants as being aggregates of dust-like Fe3O4 particles (magnetite) with a radius
R ≈ 10 µm and a remanent magnetic moment of the order of m ≈ O(10−10 A m2). The particles are
located at or close to the inner glass surface.

PACS. 33.25.+k Nuclear resonance and relaxation – 34.50.Dy Interactions of atoms and molecules with
surfaces; photon and electron emission; neutralization of ions – 67.65.+z Spin-polarized hydrogen and
helium

1 Introduction

The first hint that agents other than paramagnetic centres
may contribute to relaxation of 3He spins at glass walls
can already be found in an early paper by Fitzsimmons
et al. [1]. They have observed a magnetic field depen-
dence of relaxation times T1 of 3He contained in cells
from borosilicate (Pyrex) or aluminosilicate glass. Re-
cently Jacob et al. [2,3] have substantiated these find-
ings by systematically studying T1 in various types of Rb
coated cells which were exposed to low and high magnetic
fields. They clearly demonstrate that the relaxation rates
show hysteresis and remanence as function of the applied
field. They conclude that ferromagnetic species at or near
to the glass surface must be present which enhance re-
laxation if magnetized. Since they did not find this effect
in bare glass cells, they concluded that small iron parti-
cles had been dragged in along with the metallic rubidium
filled into the cell. Hence we were taken by surprise to find
that our bare 1.1 litre cells — blown directly from melts of
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iron-free aluminosilicate glasses — got magnetized as well
when exposed to the 1.5 T field of a MR tomograph dur-
ing administering hyperpolarized 3He to patients. Their
remanent magnetism caused a breakdown of relaxation
times down to a minimum of 〈T1,min〉 = 17 h averaged
over 31 cells in use. In a properly demagnetized state,
however, the same sample attains a very satisfactory av-
erage of relaxation times as high as 〈T1,max〉 = 150 h. This
phenomenon has been described in the first paper of this
series (referred to as Part I [4]).

In this third and last paper we present a thorough in-
vestigation of the responsible ferromagnetic sites by means
of SQUID’s (Sect. 2). We have measured size and (if pos-
sible) location of their remanent magnetic moments and
determined their hysteresis curve. The latter characterizes
them as magnetite particles (Fe3O4). Starting from a for-
mula presented in [2] we then proceed to an analysis of
3He relaxation by such small magnetized particles in the
weak collision limit (Sect. 3). Here the perturbing action
of a particle during a close diffusion passage through its
dipole field is still weak, such that the chance of depo-
larisation remains distinctly below 1. Putting all pieces
together — including the measured pressure dependence
— we can then get a fairly good estimate of the size and
number of these particles. We then turn to the strong col-
lision limit characterized by total depolarisation during a
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Fig. 1. Sketch of the gradiometer array to draw up a (gradient)
field map of the source (here: ferromagnetic particles in a glass
sample) in the (x, y)-plane of the sensors.

close encounter (Sect. 4). It is met in our cells at pres-
sures above 1 bar. By an analytic diffusion model we find
here a linear increase of the relaxation time with pres-
sure — opposite to the case of the weak collision limit.
A quantitative numerical result of relaxation by magne-
tized particles is obtained by a Monte Carlo simulation of
the perturbing action of the dipole field on the diffusing
atoms. The results of these calculations have been checked
experimentally by putting a small iron piece of known size
and magnetization inside a 3He cell and measuring its ef-
fect on the relaxation time.

2 SQUID measurements of remanent
magnetism in glass cells

In order to learn more about the size, the distribution,
and the hysteresis of the remanently magnetized parti-
cles in our 3He storage cells, we have performed measure-
ments with two multi-channel SQUID systems in mag-
netically shielded rooms at the Physikalisch-Technische
Bundesanstalt (PTB) in Berlin.

2.1 Size and distribution of remanent magnetism

The first group of measurements was performed with the
63-channel SQUID-system which is used in routine oper-
ation to record injury-related bio-magnetic fields of pa-
tients [5]. The whole setup operates inside a standard
shielded room (AK3b Vakuumschmelze). By means of a
mechanical modulation device the source-to-detector dis-
tance is periodically varied at 0.4 Hz along the x-axis and
a lock-in technique is applied to reduce the noise level. In
order to minimize the influence of global magnetic field
changes the SQUID array is operated in a gradiometer
configuration (see Fig. 1). It consists of 7 units, each of
which comprises 7 SQUID’s in the (x, y)-plane (bottom
plane) measuring the field distribution therein and two

more along the z-axis, measuring the z-gradient. The os-
cillating field values Bk(ti) (k: channel) are converted to
correlation field amplitudes Ak according to
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Here U(ti) is the actual source position recorded at the
digitized time intervals ti, (i = 1, . . . , N) over which equa-
tion (1) is integrated for a total measuring time of 100 s;
Ū is the time averaged position.

The instrument allows measurements of field pattern
with a resolution of ∆B = 30 fT. Theoretical correlation
field-amplitudes can be generated for an analytical model
of the magnetic field source and then be fitted to the mea-
sured values. As a first approach a single magnetic point
dipole was chosen. As a consequence of this restriction
fits of the near field of distributed magnetic sources do
converge poorly resulting in increased χ2 values.

From our GE 180 glass melt two glass flasks (GE #26
and GE #30, see Fig. 6 in Part I) were analysed along with
some melt probes which were just dropped into some form.
GE #26 was known to show a strong T1 hysteresis with
T1max ≈ 115 h if demagnetized and T1min ≈ 3 h if mag-
netized. The magnetized cell was fixed on the mechanical
modulation device with 1 cm as closest approach to the
bottom of the Dewar, i.e., z0 = 3.5 cm with respect to the
plane of the 49 gradiometer array (see Fig. 1). Four inde-
pendent measurements were performed. Each time the cell
was rotated clockwise around the z-axis in steps of 90◦.
The respective magnetic field maps are shown in Figure 2.
They are well described by a single magnetic dipole whose
position rotates at constant z = (4.15±0.13) cm around a
circle of diameter Φ = (5.29± 0.13) cm in the (x, y)-plane
with the centre at x = (−0.98± 0.14) cm, y = (−2.2± 0.1
(x, y)-plane with the centre at x = (−0.98 ± 0.14) cm,
y = (−2.2 ± 0.15) cm for the 0◦ position. These coordi-
nates fit well to a point source located in or on the glass
wall. In Figure 2 position and orientation of the corre-
sponding magnetic moment in the (x, y)-plane are plotted
too, showing its rotation in steps of 90◦. The magnitude
of the total magnetic moment, possibly integrated over a
cluster of individual ferromagnetic particles, turned out to
be mtot(GE #26) = (3.28 ± 0.15) nA m2. As a result we
could definitely localize a ferromagnetic spot (or agglom-
eration of dust-like ferromagnetic particles e.g.) in or on
the wall of the glass flask.

By means of a small, commercial magnetic tape de-
magnetizer the vicinity of this ferromagnetic site was then
demagnetized and its residual field re-measured. The fit
yielded the same position and orientation of the dipole but
reduced in size by about a factor of 3 (mtot(GE #26) ∼
1.2 nA m2).

GE #30 showed an initial T1 ≈ 100 h and had never
been exposed to a strong magnetizing field before being
measured by the SQUID-device. In contrast to GE #26
the parameter fit did not converge well towards a dipole
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Fig. 2. Contour plot of the correlation field-amplitudes in the
plane of the 49 SQUID sensor gradiometers emerging from a
localized magnetic dipole (arrow) which rotates in steps of 90◦

around the vertical z-axis. Field steps for 0◦, 90◦, and 270◦ ro-
tation: ∆B = 200 fT, and for 180◦: ∆B = 100 fT, respectively.

field. Apparently several ferromagnetic sites or clusters
are distributed over the cell walls at distances comparable
to that of the sample to the SQUID-array. In this case
the assumed single dipole-model of the source is no longer
valid. The only qualitative information which could be
extracted from the measured field maps was a relative
increase of the field strength by about 60% after the cell
had been magnetized in a field of 4.7 T. Note that for
this cell we observed a ratio T1,max/T1,min = 7 between
demagnetized and magnetized status.

In one of the melt probes from GE180 (≈ 4×3×1 cm3)
which was magnetized before its field pattern was mea-
sured we found a very strong single magnetic dipole with
a moment of about 300 nAm2. We shattered the probe
into pieces and finally could localize the ferromagnetic
site in one small fragment. Probably it had been picked
up from the melt form. After demagnetization the resid-
ual moment was only 2 nA m2. For GE #26 we located
a magnetic dipole with a moment as large as 4 µA m2

in the plastic nut which fixes the stopcock. The nut had
to be removed, before the cell itself could be measured
properly. Hence we found that remanently magnetized fer-
romagnetic contaminations may be found everywhere, an
experience well-known to the experts dealing with very
low magnetic fields.

2.2 Hysteresis of remanent magnetism

The hysteresis of a ferromagnet is characterized by the
magnetizing field Hs, which leads to the saturation
magnetization Ms = Bs/µ0, the remanence Br, and the

Fig. 3. Sketch of the SQUID gradiometer installed in the
cooling finger of a liquid He-Dewar. The glass cell below is
periodically passing the sensor: (a) recorded signal from a de-
magnetized cell; GE #31; (b) corresponding signal after full
magnetization at B = 3 T.

coercive force Hc (or Bc) which annuls the remanent mag-
netization. It is well-known that for a polycrystalline sam-
ple these quantities strongly depend on the domain state
of the sample which in turn is a function of the grain
size. Domain states change from superparamagnetic, to
single domain, and finally to multidomain with increasing
grain size. Furthermore, the critical grain size for domain-
transitions depends on composition, temperature, and mi-
crostructure. The maximum coercive force and remanent
magnetization for a given material occurs within its single
domain range. For larger grain sizes, both coercivity and
remanent magnetization decrease as the grain subdivides
into domains. Going to smaller grain sizes, coercivity and
remanent magnetization again decrease, but this time due
to the randomizing effects of thermal energy. Fe3O4 (mag-
netite) is the most probable ferromagnetic contamination
in or on glass surfaces and one of the most extensively
studied magnetic minerals. Its grain size dependent hys-
teresis parameters are well-known. This will help to anal-
yse number and average size of ferromagnetic sites in our
glass vessels from measurements of remanent magnetiza-
tion curves and T1 hysteresis as well as of total remanent
magnetic moments of the sites and pressure dependence
of T1.

At the PTB the hysteresis of the ferromagnetic sites
in our glass vessels was measured inside a 6 layer µ-metal
shielded room (2.2 × 2.2 × 2.3) m3 with residual static
magnetic field of about 2 nT [6]. A one-channel SQUID
gradiometer was used to detect the magnetic signal from
the glass cells which were periodically moved forth and
back closely below the gradiometer. In order to reproduce
the relative distances between source and sensor the cells
were moved along two horizontal PVC rails (Fig. 3).
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Fig. 4. Hysteresis of the remanent magnetization in the cell
GE #31. For B > 0 the virgin curve is shown; for B < 0
first demagnetization is observed, followed by a reversed re-
magnetization.

The signals of two flasks from GE180 glass (GE #26
and GE #31, Fig. 6 in Part I) were measured first in
the demagnetized state. Then the cells were put into the
stray field of 10 mT of a NMR-tomograph for about 10 min
which was located in the building next door. Brought back
again to the SQUID-device their respective magnetization
signals were re-measured. This procedure was repeated,
while increasing the magnetic field step by step by placing
the cells closer to the bore of the magnet, finally reach-
ing the maximum field strength of 3 T. Care was taken in
that the cells were moved in and out always in the same
orientation relative to the field axis. After exposure to the
3 T field, at full magnetization, this orientation was in-
verted and the series of measurements repeated, starting
again at the lowest field of 10 mT. Graphs (a) and (b)
in Figure 3 show the gradiometer signals of the demagne-
tized and fully magnetized cell GE #31. While the signal
amplitude remains below noise level in the former case,
it reaches 8 pT in the latter. Similar signals were found
for the other cell, except that still a small signal of about
0.8 pT could be traced in the “demagnetized” state. This
shows that our demagnetization procedure is not optimal
yet.

Plotting the signal as function of the applied magnetiz-
ing field, we obtain hysteresis curves of the remanent mag-
netization, shown in Figure 4 for the case of cell GE #31.
Saturation is reached at a magnetizing induction of about
0.2 T (corresponding to Hs ≈ 160000 A/m). After field
reversal it is annulled at about –0.06 T (corresponding to
a remanent coercive force of Hrc ≈ −50000 A/m). The
solid lines curves are exponential fits used as guide for the
eye. For the other cell (GE #26) we get somewhat lower
values (Bcr ≈ −0.04 T, Hs ≈ 0.15 T/µ0). In order to in-
vestigate the remanent magnetization of the Pyrex part
of our cells, we measured the magnetic signal arising from
the stopcock and flange of cell GE #31 which had been
rotated before by 180◦ in order to point upwards towards
the SQUID sensor (compare Fig. 3). From a similar hys-
teresis curve of remanent magnetization we could extract

the values Bcr ≈ −0.025 T for the remanent coercive force
and Hs ≈ 0.12 T/µ0 for the magnetizing field.

The grain-size dependence of remanence coercivity in
magnetite is given, e.g. in reference [7], showing exper-
imental data from crushed grains in the range of grain
diameter 0.2 µm ≤ 2R ≤ 100 µm which can be parame-
terized by a double-exponential fit

Bcr
∼= 15.4 + 16.7 exp(−R/(30.9 µm))

+ 25.5 exp(−R/(2.29 µm)) mT. (2)

Using equation (2) our results on the remanent coercive
force of 25 mT ≤ Bcr ≤ 60 mT indicate grain sizes in the
range 0.3 µm ≤ R ≤ 10 µm.

3 Mechanism and analysis of 3He relaxation
by magnetized particles in the weak collision
limit

In reference [2] an estimation of the 3He relaxation due
to a large number Ns of microscopically small, magne-
tized particles with magnetic moment m is given based on
equation (1) in Part I yielding a relaxation rate 1/T ′

1 ≈
(µ0/4π)2γ2

He(m
2/R6)J(τ). This equation is derived in the

so-called weak-collision limit, where the interaction time
τ of a 3He-atom with a particular m is assumed to be
much shorter than the Larmor period 2π/ω1 of spin pre-
cession around the perturbing field, that is, if ω1τ � 1.
With ω0 being the 3He Larmor frequency in the exter-
nal magnetic field (unperturbed field) the spectral density
J(τ) = τ/(1+ω2

0τ
2) reduces to J(τ) ≈ τ ≈ R2/6D in case

of ω0τ � 1 where D is the diffusion constant of 3He. At
room temperature and gas pressure p, the diffusion con-
stant amounts to D = 1.84× 10−4 (m2 bar/s)/p [8]. After
having factorized in the fraction of 3He spins interacting
with the sites Jacob et al. obtain the relaxation rate

1
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Hem

2
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9RV 1.84 × 10−4
p. (3)

In this derivation the assumption is made that the NS sites
are located on the surface with their effective interaction
volume Vint given by half spheres of radius R, where R is
the characteristic particle radius1. Characteristic for the
weak collision limit with the condition ω0τ � 1 is the
linear dependence of the relaxation rate on the pressure
p and its quadratic dependence on the magnetization m
of the particles. In the strong collision case (ω1τ � 1),

1 Since the 3He atoms apparently do not enter the magne-
tized particle one may argue, whether one should define instead
the interaction volume between R and 2R, for instance, and
replace the three dimensional diffusion length R by a one di-
mensional of 2R for entering and leaving the hollow half sphere
in radial direction. One then looses a factor of 8 in the mean
squared interaction field 〈B2

int 〉 and gains back equivalent fac-
tors 4/3 in τ and 7 in Vint.
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Fig. 5. As function of the particle radius are plotted: (i) re-
manent magnetic moment m (full lines), (ii) precession an-
gle within the dipole field ω1τ at a pressure of 8 bar (left)
and 0.2 bar (right) (dotted lines), (iii) number of particles Ns

(dashed lines) as calculated from the results of reference [2]
(left) and cells C #4 and C #13 (right).

where equation (3) is no more valid, the relaxation rate
will scale with 1/p and depend almost linearly on m (see
Sect. 4). From equation (3) we obtain a relation between
the number NS , the magnetic moment m, and the radius
R of the particles on one hand side and experimentally
accessible quantities on the other side:

NSm2

R
= 0.127 × 10−5(A2 s bar)V

1/T1

p
. (4)

We can interpret these results in more detail if we assume
the particles to be magnetite. Its bulk saturation magne-
tization is Ms = 4.69 × 105 A/m [7], corresponding to
3.75µB per formula unit. The remanent moment of mag-
netite particles with the radius R is then

m = (4π/3)R3Ms

[
1.3 × 10−4(R/m)−0.555

]
. (5)

Here the term in square brackets fits in the range
10−7 m ≤ R ≤ 10−3 m to the empirical R-dependence
of the ratio of remanent to saturated magnetization
(Mr/Ms) [7] (see Fig. 5). Inserting equation (5) into equa-
tion (4) we get in addition the dependence of Ns on R
for a particular cell, which is also plotted in Figure 5.
Furthermore, with the help of equation (5) we can check
the weak collision limit ω1τ ≈ ω1R

2/6D � 1 (as a first
estimate this relation is valid to the limit ≤ 1). For low
B0 the total field within the interaction zone is dominated
by the local moment m, leading to the estimate

ω1 ≈ γHeµ0m/((4/3)πR3) = γHeµ0Mr. (6)

In Figure 5 the resulting R-dependence of ω1τ is plotted,
too, for p = 8 bar in the left plot and for 0.2 bar in the
right hand-side plot. Since the authors of reference [2] have
observed a perfectly linear increase of 1/T1 up to 8 bar in
their cell, we may conclude the weak collision limit to be
well obeyed in their case, say ω1τ ≤ 0.1. This would cor-
respond to a particle radius R ≤ 0.5 µm and a moment
of m ≤ 0.1 pAm2 according to Figure 5 (left). One may

Fig. 6. Measured relaxation rates in magnetized glass flasks
C #4 (squares) and C #13 (triangles) from Corning 1720 as
function of 3He gas pressure. The roughly linear increase below
1 bar (according to the weak collision theory) levels off towards
higher pressure values.

now insert the slope of (1/T1)/p = 3.11 × 10−3 h−1/bar
reported in reference [2] for a cell of volume V = 50 cm3,
into equation (4), as well as the above limits and extract
a lower limit for the particle number of Ns ≥ 2700 (Fig. 5,
left plot). The total moment in this limit amounts to
mtot = Nsm ≈ 0.3 nAm2 which is close to the values
measured in our cells by SQUID-gradiometry (Sect. 2).
The SQUID measurements cannot discriminate, however,
between a single, concentrated and a distributed, dust-like
dipole source within its spatial resolution of a couple of
cm. The authors of reference [2] arrive at similar numbers
starting from the assumption that the particles consist of
metallic iron with a (constant) magnetization of 1µB per
iron atom.

In order to check whether the ferromagnetic contam-
ination in our uncoated aluminosilicate glass flasks con-
sists also of dust-like particles or of single macroscopic
particles, we measured the relaxation rate of two Corn-
ing 1720 glass cells 1.1 l volume (C #4 and C #13 in
Fig. 6 in Part I) as function of the gas pressure. (In the
demagnetized state they reach relaxation times T1max of
190 h and 100 h, respectively.) The cells were magne-
tized prior to the relaxation measurements. The results
are shown in Figure 6. Grosso modo, we see a roughly
linear increase of the relaxation rate with pressure below
1 bar indicating that the relaxation occurred on micro-
scopic dust-like particles obeying the weak collision limit.
1/T1 levels off at higher pressures. This observation is at-
tributed to the beginning of the strong collision limit with
ω1τ ≥ 1. The crossover between the two regimes, defined
by ω1τ = 1, seems to occur around p ≈ 0.7 bar for cell
C #4 and around p ≈ 1 bar for cell C #13 (see Fig. 6).
On the right (ω1τ)-plot of Figure 5 we find this point at
radii of R(C #4) ≈ 13 µm and R(C #13) ≈ 10 µm,
respectively (properly scaled with p/(0.2 bar)). These
radii compare well with those derived from the measured
coercive forces via equation (2). The corresponding
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magnetic moments are m(C #4) ≈ 2.9 × 10−10 Am2 and
m(C #13) ≈ 1.5 × 10−10 A m2, respectively.

In addition, we derive the number of particles via equa-
tion (4) from the initial slopes of the relaxation curves in
Figure 6, which we find to be (1/T1p)C#4 ≈ 0.07 h−1bar−1

and (1/T1p)C#13 ≈ 0.12 h−1bar−1, respectively. These
slopes give Ns(C #4) ≈ 4 and Ns(C #13) ≈ 21. The cor-
responding total moments are calculated to mtot(C #4) ≈
1.2 nAm2 and mtot(C #13) ≈ 3 nAm2, respectively. For
comparison, we quote again the directly measured value
of 3.28 nAm2 obtained for cell GE #26 by the SQUID-
gradiometry measurements.

Altogether we have obtained a very consistent picture
of the quantity of the ferromagnetic contamination in our
cells and their relaxing action on the 3He-spins: the coer-
cive force as well as the pressure at which the transition
from the weak to the strong collision limit occurs, point to
magnetite particles of radius R ≈ 10 µm with remanent
magnetic moments of order m = O(10−10Am2). The ini-
tial slope at which the relaxation rate rises with pressure
as well as the total remanent moment mtot = O (nAm2)
enable us to estimate the number of particles to be of the
order of 10. Moreover, we conclude that the magnetite
particles are essentially located on the surface of the glass
cells. A homogeneous distribution within the glass wall
would require a 100 times larger number of particles, since
their interaction radius is only of the order of their size,
i.e. 10 µm. In the molten state of glass such particles can-
not exist under any circumstances. However, during the
process of thermoforming at corresponding lower temper-
atures and relatively long intermediate time intervals re-
duction of hematite to magnetite may set in; and due to
surface germs surfaces have the tendency to crystalliza-
tion in particular. On the other hand, we did not observe
a clear-cut correlation between number/size of magnetite
particles and the intrinsic iron content of the melt. Hence
we have to consider surface contaminations due to tools
used during the process of glass blowing. So far we did not
investigate yet at which stage such contamination might
have been brought in. One may ask why these particles
have not been washed out during the cleaning process of
the cells ahead of evacuation: during blowing they might
have sunken into the glass surface and been wetted by a
microscopic glass layer. In this case only rigorous etching
would have removed them. In any case, we have observed
much bigger and much less ferromagnetic particles in our
cells than the authors of reference [2] in their samples.
This points to a different source in reference [2], possibly
the Rb filling as suggested there.

4 Relaxation in the strong collision limit

The foregoing analysis has shown that the weak collision
limit of 3He relaxation by magnetized particles of radius
10 µm, observed in our cells, starts to turn over into the
strong collision limit (ω1τ > 1) at pressures p ≥ 1 bar.
Since we are filling these cells routinely up to 3 bar for
shipping and up to 6 bar as targets, we are definitely en-
tering this regime and have tried, therefore, to get some

insight into it by theory and experiment. Qualitatively,
one could argue that the dipole on the wall creates a cer-
tain volume, say a half sphere of radius Rr around itself
within which the nuclear polarization fully relaxes due to
a random precession angle ω1τ � 1 in the perturbing
dipole field. The loss of polarized atoms N〈Ṗ 〉 would then
equal the diffusion current IP of polarized atoms into that
half sphere. Let us consider a polarization of degree P1 at
some radius R1 � Rr. By solving the diffusion equation of
the current density jP = −D grad(P dN/dV ) within the
surrounding half-sphere one finds a diffusion current of

IP =
4πD(N/V )P1

R−1
1 − R−1

r

≈ −4πD(N/V )P1Rr. (7)

Equation (7) implies a steep hyperbolic decrease of P (r)
in the diffusion zone. Therefore, it is sufficient to consider
a very small zone of negligible volume (V1) as compared
to that of the cell (V ) and to set P (r > R1) = P1 = 〈P 〉.
The relaxation rate then follows to be

1/T1 = −〈Ṗ /P 〉 ≈ 4πDRr/V. (8)

Here the diffusion coefficient introduces the expected de-
crease 1/T1 ∼ 1/p or simply T1 ∼ p. The weak point of this
derivation is the ad hoc ansatz of a pressure independent
“black hole” radius Rr, however.

A quantitative analytic solution of the strong collision
problem is not known to us. We have aimed at a numerical
solution, therefore, by simulating diffusion and relaxation
within a magnetic dipole field by Monte Carlo methods
(MC). To that end we integrate the Bloch equations along
diffusion random walks, applying a code which has been
published by part of us in an earlier paper on a similar
problem reference [9]. The magnetic field under study is
the superposition of a magnetic dipole field BD and a
homogeneous field B0 given by

B(r) = BD + B0 =
µ0

4π

3r̂(r̂ · mp) − mp

|r|3 + B0. (9)

In the following a point like magnetic moment mp is as-
sumed to be embedded in the wall of the glass at a distance
d from its surface (see Fig. 7a). We confine the discussion
to the cases that mp points along the z-axis, parallel to
the surface and that the external field B0 is parallel or
anti-parallel to the moment. Assuming mp = 400 nAm2,
B0 = 1 mT, and d = 50 µm, the amount of the resulting
field |BD + B0| inside the gas volume is plotted in Fig-
ures 7b and 7c as function of cylindrical co-ordinates z and
r with respect to the dipole for the two cases B0 ↑↑mp and
B0 ↑↓mp, respectively. Two features should be empha-
sized: (i) there are strong magnetic field gradients at short
distances from the dipole; (ii) the absolute field shows
a zero crossing for the parallel case at z ≈ 0 mm and
r ≈ 0.35 mm and for the anti-parallel case at z ≈ 0.5 mm
and r ≈ 0 mm, respectively. Thus we expect strong re-
laxation of polarized 3He atoms diffusing through these
particular regions. Position, shape, and spatial extension
of zero crossings depend not only on the size but also on
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Fig. 7. (a) Magnetized particle at distance d beneath the glass
surface whose point like magnetic moment mp is pointing along
the z-axis parallel to the surface. r = position vector of a dif-
fusing 3He atom. B0 = external magnetic field. (b) Plot of
resulting field amount |BD + B0| as function of z and r for
mp = 400 nAm2, B0 = 1 mT, and B0 ↑↑ mp. (c) Correspond-
ing plot with B0 ↓↑ mp.

the relative orientation of B0 and mp. This may cause an
orientation dependence of 3He relaxation, as has indeed
been observed recently in SEOP cells [3]. The relaxation
depends strongly on the distance d of the dipole from the
surface. According to Figures 7b and 7c we may expect
almost no effect any more for d ≥ 0.4 mm, even for this
rather large moment (a factor of 100 over those discussed
above).

In order to save computer time we speed up relax-
ation by choosing relatively large moments and stud-
ied diffusion only in a restricted hemisphere of volume
V ′ = (2π/3)(R′)3 (see Fig. 7a). In order to avoid bound-
ary effects we define a criterion for the appropriate size
of V ′, namely, that for volumes Ṽ ′ ≥ V ′ the correspond-
ing relaxation time should scale as T̃ ′

1 = T ′
1(Ṽ

′/V ′) in the
MC simulation. For the field parameters chosen we could
restrict R′ to 0.5 mm. The dipole induced relaxation time
in a cell of volume V ≥ V ′ is then given by

T1 = T ′
1(V/V ′). (10)

3He diffusion is simulated for a Maxwellian velocity distri-
bution at T = 300 K. Starting at a random position inside
V ′ the trajectory of the particle undergoing gas-kinetic
collisions is tracked using P (λ)dλ = (1/ λ0)exp(−λ/λ0)dλ
as probability distribution of the mean free path length
λ0. At p = 1 bar the mean free path length λ0 is about
50 nm. An analytical expression for the double differential
scattering cross-section (d2σ/d ϑdE) (with ϑ = scattering
angle, E = centre of mass energy) is given in reference [10].
It is strongly forward peaked. As a first check we repro-
duced the value of the free diffusion coefficient D of 3He
at 1 bar to be D ≈ 2 cm2/s [8]. Note, that λ0 should not

be mixed up with the much longer mean free path λ̄ enter-
ing the usual diffusion equation D = (1/3)v̄λ̄, where λ̄ is
defined via σ̄ = 1/nλ̄ =

∫
ϑ,E(d2σ/d ϑdE)(1 − cos ϑ)dϑdE

(with n = particle density); λ̄ is equivalent to the geomet-
ric cross-section of a hard sphere.

The Bloch equations were integrated using standard
Runge-Kutta numerical integration schemes with time in-
tervals of δt = 1 ns during which the magnetic field vec-
tor was kept constant. The accuracy of this discretisa-
tion was checked using different time steps. Within V ′
the atoms were assumed to be initially fully polarized,
i.e., P0 = 1. As a result from space tracking of 2000,
homogeneously distributed atoms, the average polariza-
tion 〈P (tk)〉 was determined at times tk = k∆t with
∆t � δt and k = 1, 2, ..., K. The simulation was stopped
at 〈P (tk)〉 ∼= 1/e. The corresponding relaxation time was
found to be of order T1s ∼ O(ms).

In order to identify the main sources of re-
laxation the relative field gradient |∇B|/B =√

(∂B/∂z)2 + (∂B/∂r)2/B is calculated for the field
distributions shown in Figures 7b and 7c (cylindrical
symmetry). The results are plotted in Figures 8a and 8b
as function of z and r for both orientations of the mag-
netic guiding field. As a measure of spin relaxation we
define an angular velocity ωs = |d(arccos(I · B/IB))/dt|
at which the angle of projection of nuclear spins I onto
the respective field axis B(r) changes. This is displayed
in Figures 8c and 8d. One recognizes immediately the
strong correlation between the spin relaxation rate and
the strength of the relative magnetic field gradient. Both
show sharp maxima at the positions of the field zero
crossings and at very short distance from the dipole.

The 3He relaxation rates, resulting from the MC-
simulations of the atomic diffusion within a restricted
hemisphere of radius R′ = 0.5 mm for some character-
istic values of the relevant parameters mp, d, B0, and p
are plotted in Figures 9a to 9d. The increase of relaxation
rate with growing moment is shown in Figure 9a for sev-
eral distances d from the surface with all other parameters
fixed. Asymptotically it appears to be linear, whereas the
contribution of the cut off d levels off. Figure 9b shows
the expected fast decrease of the relaxation rate with the
distance from the surface for a moment of 100 nAm2. Be-
yond 0.3 mm the relaxation has practically vanished. For
the 1000 times smaller moments, which are actually ob-
served in our vessels, this would of course already occur at
much smaller distances; but we refrained from MC simula-
tions of the correspondingly much longer relaxation times.
Quite interesting is the quasi-hyperbolic dependence of the
relaxation rate on B0 shown in Figure 9c. The steep in-
crease towards low field is due to the rapid expansion in
radius and volume of the strongly relaxing zones around
the dipole and in particular around the zero field crossing.
The pressure dependence in Figure 9d shows the linear re-
lation T ′

1 ∼ p above 0.2 bar as expected from the analytic
diffusion model already; the slope is 0.19 × 10−6 h/bar.

For a qualitative experimental confirmation of the field
dependence of 3He relaxation in magnetized cells, cell
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Fig. 8. Correlation between relative
magnetic field gradient |∇B| /B
and spin relaxation rate ωs for
B0 ↑↑ ẑ (a) and (c) and B0 ↑↓ ẑ
(b) and (d), plotted in the (r, z)-
plane. Distance of point dipole of
size 400 nAm2 from the surface:
d = 0.05 mm.

Fig. 9. MC simulation of the re-
laxation rates 1/T ′

1 of polarized
3He diffusing at room temperature
within a hemisphere of volume V ′ =
(2π/3)(R′)3 = 0.262 × 10−9 m3.
(a) 1/T ′

1 plotted as a function of
magnetic moment for three different
distances d of the point-like dipole
from the glass surface (B0 ↑↑ ẑ,
B0 = 1 mT, p = 1 bar), (b) as a
function of d (mp = 100 nA m2,
B0 ↑↑ ẑ, B0 = 1 mT, p = 1 bar),
(c) as function of B0-field (mp =
100 nA m2, B0 ↑↑ ẑ, d = 0.05 mm,
p = 1 bar), (d) as function of the
p (mp = 100 nA m2, B0 ↑↑ ẑ,
B0 = 1 mT, d = 0.05 mm). In (d)
a plot of T1 is added (dashed line)
in order to show the (approximate)
linearity with p. The lines are fitting
the points in order to guide the eye.

GE #26 was magnetized to saturation in the 1.5 T field of
a MR scanner. The relaxation time with the high field ap-
plied was measured to be T1 = (30± 2.5) h. Subsequently
the relaxation time was re-measured at low field (B0 ≈
0.8 mT) giving T1 = (3 ± 0.3) h. Care was taken that the
direction of the remanent magnetization was kept parallel
to B0 also in the case of low field. Although the saturated
magnetization exceeds the remanent one by a factor of 13
for magnetite particles of radius 10 µm (see Eq. (5)), the
relaxation time was found to be 10 times longer in the high
field. Indeed, in the strong collision limit our MC simula-

tion predicts a fast drop of relaxation rates at high fields
(Fig. 9c). This gives us at least a qualitative understanding
of the observed increase of T1. Note that the parameters
of our MC simulations do not fit to the low collision limit,
whereas the low field measurement probably does.

In order to verify experimentally the functional pres-
sure dependence we put a piece of magnetized iron with
a weight of 27 µg directly into a Corning 1720 glass
cell of V ≈ 0.7 l and measured the relaxation times at
three different pressures (Fig. 10). A linear fit T1 [h] ≈
(0.438 h/bar)p describes the data fairly well. We have
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Fig. 10. Measured 3He relaxation time as function of gas pres-
sure in a Corning 1720 glass cell of volume V = 0.7 l, containing
a small magnetized iron piece with mass of 27 µg and rema-
nent magnetic moment of m ≈ 350 nAm2. A straight line fit to
the data (solid line) yields T1 [h] = ((0.438 ± 0.028) h/bar)p +
(0.062 ± 0.025).

measured the hysteresis curve of this piece by means of a
vibrating-sample magnetometer (described for example in
Ref. [11]) and found a remanent moment of 350 nAm2. We
may insert this value into Figure 9a and read from the plot
a relaxation rate of 1/T ′

1 ≈ 3500 s−1 at d ≈ 0.12 mm. The
latter value corresponds to the radius of an iron half sphere
weighing 27 µg and lying on the glass surface. We regard
this situation being fairly equivalent to a point dipole ly-
ing at the distance d beneath the surface as assumed in
the MC simulation (see above). Scaled with the ratio of
the volumes (see Eq. (10)) the MC simulation would pre-
dict at p = 1 bar a relaxation time of T1 ≈ 13 min which
is a factor of 2 below the measured value. In view of the
simplifications made, we regard this to be a satisfactory
agreement.

We may also insert the measured slope of 0.438 h/bar
into the analytic formula (8) and deduce an effective re-
laxation radius of Rr = 0.17 mm, slightly larger than the
particle radius; it would encircle fairly well the strongly
relaxing zones in Figure 8 which have been calculated for
comparable parameters.

We have performed another measurement with the iron
piece demagnetized beforehand. From the measured mag-
netization curve we deduce that it will be re-magnetized
in the measuring field of 0.8 mT to a moment of about
60 nA m2. The relaxation time at 1 bar was found to be
T1 = 3.2 h, a factor 6.3 higher than measured for the re-
manent moment. This is again in fair agreement with the
ratio of 5.8 of the moments as is expected from the linear-
ity 1/T1 ∼ m displayed in the MC simulations (Fig. 9a).

Summarizing, we find for the case of the strong colli-
sion limit satisfactory agreement between calculations and
experiment in all important features.

5 Conclusions

We have observed a drastic reduction of the relaxation
time in our (uncoated) cells after exposure to the strong
magnetic field of a MR tomograph. Long relaxation times
can be recovered by an ordinary demagnetization proce-
dure. (Similar experience has been reported before for
Rb coated cells and has been ascribed to the coating
procedure.) By SQUID measurements in a magnetically
shielded environment we have identified the correspond-
ing remanent dipole moments and determined their nature
(magnetite) and size (≈10 µm) by measuring their hys-
teresis. Additional information has been obtained from
measurements of the pressure dependence of the relax-
ation rate. Below 1 bar it rises linearly with p according to
the weak collision limit which is characterized by a small
change of the phase of Larmor precession (ω1τ < 1) dur-
ing the time τ of interaction with the local dipole. The
slope allows us to estimate the number of particles to be
≈4 in one and ≈21 in another cell. Above 1 bar the re-
spective curve bends over into the strong collision limit
(ω1τ > 1). This finding points again to a particle size of
about 10 µm.

We have studied the non-perturbative, strong colli-
sion limit (which applies for larger moments at higher
pressures) by Monte Carlo simulation of the diffusion of
polarized 3He spins through a dipole field added to a ho-
mogeneous one. Here a strong (“black”) relaxation is con-
centrated in two regions of strong relative field gradients,
one at very short distances from the dipole, the other in
the region where the dipole field cancels the homogeneous
one. In this regime the relaxation rate rises linearly with
the dipole moment (as compared to a quadratic rise in
the perturbative weak collision limit) and decreases with
pressure like 1/p. The latter is understood also in terms
of an analytical model which calculates the diffusion cur-
rent into a totally relaxing “black” zone having an ef-
fective relaxation radius Rr. We have verified our Monte
Carlo simulations experimentally by measuring the relax-
ation induced by a small soft iron grain (27 µg) within the
cell and found satisfactory quantitative agreement with all
theoretical predictions.

Our prime interest in the matter presented in this se-
ries of three papers was directed towards a reproducible
production of transport vessels for hyperpolarized 3He gas
with relaxation times of 100 h or more. This goal has been
fully achieved. It turned out, however, that this task was
not just a matter of developing and obeying some simple
recipes. Rather it drew us into a broad field of relaxation
physics of 3He with more open questions and experimental
complications than anticipated. By now we have gained a
clearer and wider view of these relaxation phenomena ex-
perimentally as well as in terms of (partly revised, partly
new) theoretical concepts which are in qualitative (partly
quantitative) agreement with the experimental findings.
What is still to be done? From a practical standpoint of
view it would be useful, for example, to know how the
ferromagnetic contaminations have sneaked into the ves-
sels and how such surface contamination can be avoided.
Further theoretical attempts could be directed towards
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quantum chemical calculations of 3He relaxation at dan-
gling bonds and metal surfaces for which we present but
qualitative or semi-empirical considerations.
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